2004
Volume 61, Issue 3
  • ISSN: 1876-9071
  • E-ISSN: 2214-5729

Abstract

Abstract (English)

Multilingualism is considered one of Europe’s fundamental cultural pillars. However, understanding between languages is hampered by the fact that the majority of European citizens only master one or two foreign languages, which leads to fragmentation. To overcome these language barriers, modern language technologies play a crucial role. Within the European Union, initiatives are being undertaken to create a common and sustainable language infrastructure, in which the strongly technology-supported Dutch language has a prominent position. Machine translation is one of the main application areas of language technology, and Dutch is integrated into all major online translation systems. Since translation goes hand in hand with reading and comprehension, this study also focuses on deep reading and the extent to which digitalization has caused structural changes in our reading practices. Within the field of artificial intelligence, which is increasingly central to the digital age, Dutch is making significant progress and can serve as a model for other languages.

Loading

Article metrics loading...

/content/journals/10.5117/IN2023.3.001.SREB
2023-12-01
2024-10-31
Loading full text...

Full text loading...

/deliver/fulltext/18769071/61/3/IN2023.3.001.SREB.html?itemId=/content/journals/10.5117/IN2023.3.001.SREB&mimeType=html&fmt=ahah

References

  1. Agerri, R. et al. (2021). Report on the state of the art in Language Technology and Language-centric AI. European Language Equality (ELE)Project (D1.2). Geraadpleegd op 29november2022 op https://european-language-equality.eu/deliverables/
    [Google Scholar]
  2. Aldabe, I., Rehm, G., RigauG., & Way, A. (2022). Report on existing strategic documents and projects in LT/AI. European Language Equality (ELE) Project (D3.1). Geraadpleegd op 29november2022 op https://european-language-equality.eu/deliverables/
    [Google Scholar]
  3. Arenas, A. G., & Toral, A. (2022). Creativity in translation: machine translation as a constraint for literary texts. arXiv preprint arXiv:2204.05655. Geraadpleegd op 7juni2023 op https://arxiv.org/ftp/arxiv/papers/2204/2204.05655.pdf
    [Google Scholar]
  4. Brglez, M., & Vintar, Š. (2022). Lexical Diversity in Statistical and Neural Machine Translation. Inf., 13(93). Geraadpleegd op 29november2022 op https://pdfs.semanticscholar.org/3946/03b0df929d0423b84849dc3e72fee0c3d4b6.pdf?_ga=2.108170242.1265146524.1659289849-285655960.1659289849
    [Google Scholar]
  5. De Swaan, A. (2004). Endangered Languages, sociolinguistics and linguistic sentimentalism. European Review. 12(4), 567-589.
    [Google Scholar]
  6. ELIS (2022). European Language Industry Survey 2022. Trends, expectations and concerns of the European Language Industry. Geraadpleegd op 29november2022 op https://ec.europa.eu/info/sites/default/files/about_the_european_commission/service_standards_and_principles/documents/elis2022-report.pdf
    [Google Scholar]
  7. [EC 2012] European Commission. (2012). Europeans and their languages. Special Eurobarometer 386. Geraadpleegd op 29november2022 op https://ec.europa.eu/commfrontoffice/publicopinion/archivesebs/ebs_386_en.pdf.
    [Google Scholar]
  8. [EC 2013] European Commission. (2013). Frequently asked questions on languages in Europe. [EC MEMO 26.9.2013]. Geraadpleegd op 29november2022 op https://ec.europa.eu/commission/presscorner/detail/en/MEMO_13_825
    [Google Scholar]
  9. [EC 2019] European Commission. (2019) Foreign language skills statistics, Eurostat, april2019. Geraadpleegd op 29november2022 op https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Foreign_language_skills_statistics#Level_of_command_of_best_known_foreign_language).
    [Google Scholar]
  10. [EC 2019a] European Commission. (2019). Building Trust in Human Centric Artificial Intelligence. [EC COM (2019)], 168. Geraadpleegd op 29november2022 op https://ec.europa.eu/jrc/communities/en/community/digitranscope/document/building-trust-human-centric-artificial-intelligence
    [Google Scholar]
  11. [ELRC 2019] European Language Resource Coordination. (2019). Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe. Why Language Data Matters: ELRC White Paper. Geraadpleegd op 29november2022 op https://lr-coordination.eu/
    [Google Scholar]
  12. [EP 2018] European Parliament. (2018). Language equality in the digital age. European Parliament resolution of 11 September 2018 on language equality in the digital age [2018/2028(INI)], geraadpleegd op 29november2022 op https://www.europarl.europa.eu/doceo/document/TA-8-2018-0332_EN.pdf
    [Google Scholar]
  13. [EP 2022] European Parliament. (2022). Multilingualism: The language of the European Union. Briefing. Geraadpleegd op 29november2022 op https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/642207/EPRS_BRI(2019)642207_EN.pdf [EP 2023] European Parliament. (2023). EP klaar om te onderhandelen over eerste regels voor veilige en transparante AI. Geraadpleegd op 23november2023 op https://www.europarl.europa.eu/news/nl/press-room/20230609IPR96212/ep-klaar-om-te-onderhandelen-over-eerste-regels-voor-veilige-en-transparante-ai
    [Google Scholar]
  14. [E-READCOST 2018]Stavanger Verklaring over de Toekomst van Lezen. Geraadpleeegd op 29november2022 op https://ereadcost.eu/wp-content/uploads/2019/01/E-READStavangerDeclaration_NL_31012019.pdf
    [Google Scholar]
  15. Firth, J. et al. (2019). The ‘online brain’: how the Internet may be changing our cognition. World Psychiatry. 18(2), 119-129. Geraadpleegd op 29november2022 op https://onlinelibrary.wiley.com/doi/full/10.1002/wps.20617
    [Google Scholar]
  16. Garfinkle, A. (2022). The Erosion of Deep Literacy. National Affairs, 53. Geraadpleegd op 29november op https://nationalaffairs.com/publications/detail/the-erosion-of-deep-literacy
    [Google Scholar]
  17. Harari, Y. N. (2017). Homo deus. Eine Geschichte von Morgen. [vertaald uit het Engels door AndreasWirthensohn]. München.
    [Google Scholar]
  18. Jansen, M. (2018). Hoe overleeft het Nederlands in de digitale wereld?Taaluniebericht. Geraadpleegd op 29november2022 op https://taaluniebericht.org/artikel/hoe-overleeft-het-nederlands-de-digitale-wereld
    [Google Scholar]
  19. James, K. H. & Atwood, T.P. (2009). The role of sensori-motor learning in the perception of letter-like forms: tracking the causes of neural specialization for letters. Cognitive Neuropsychology. 26(1), 91-110. Geraadpleegd op 29november2022 op https://journals.sagepub.com/doi/epub/10.1177/1073858415595005
    [Google Scholar]
  20. Kovač, M. & van der Weel, A. (2018). Reading in a post-textual era. First Monday. 23(10). Geraadpleegd op 29november2022 op https://firstmonday.org/ojs/index.php/fm/article/view/9416
    [Google Scholar]
  21. Krek, S. (2012). The Slovene Language in the Digital Age. Slovenski jezik v digitalni dobi. META-NET White Paper Series: Europe’s Languages in the Digital Age. Springer.
    [Google Scholar]
  22. Leal, A. (2021a). The European Union’s translation policies, practices and ideologies: time for a translation turn. Perspectives. 30, 195-208.
    [Google Scholar]
  23. Leal, A. (2021b). English and Translation in the European Union. Unity and Multiplicity in the Wake of Brexit. Routledge.
    [Google Scholar]
  24. Loh, K. K. & Kanai, R. (2016). How has the Internet reshaped human cognition?The Neuroscience. 22(5), 506-520.
    [Google Scholar]
  25. Moseley, Ch. & Alexandre, N. (2010). Atlas of the world’s languages in danger. UNESCO Publishing. Geraadpleegd op 29november2022 op https://unesdoc.unesco.org/ark:/48223/pf0000187026
    [Google Scholar]
  26. Odijk, J. (2012). The Dutch Language in the Digital Age. Het Nederlands in het Digitale Tijdperk. META-NET White Paper Series: Europe’s Languages in the Digital Age. Springer.
    [Google Scholar]
  27. Rehm, G. (2023). European Language Grid: Introduction. In Rehm, G. (Red.). European Language Grid. Cognitive Technologies. Springer. Geraadpleegd op 7juni2023 op https://doi.org/10.1007/978-3-031-17258-8_1
    [Google Scholar]
  28. Rehm, G. et al. (2020). The European Language Technology Landscape in 2020: Language-Centric and Human-Centric AI for Cross-Cultural Communication in Multilingual Europe. In Proceedings of the Twelfth Language Resources and Evaluation Conference (LREC) Marseille, France, 3322–3332. Geraadpleegd op 5juni2023 op https://www.academia.edu/80790624/The_European_Language_Technology_Landscape_in_2020_Language_Centric_and_Human_Centric_AI_for_Cross_Cultural_Communication_in_Multilingual_Europe
    [Google Scholar]
  29. Rehm, G. & Uszkoreit, H. (Red.). (2012). META-NET White Paper Series: Europe’s Languages in the Digital Age, 32 volumes on 31 European languages. Springer.
    [Google Scholar]
  30. Rehm, G. & Uszkoreit, H. (Red.) (2013). META-NET Strategic Research Agenda for Multilingual Europe 2020 (White Paper Series). Springer.
    [Google Scholar]
  31. Sayers, D. et al. (2021). The dawn of the human-machine era. A forecast of new and emerging language technologies. Technical report, LITHME project, 2021. Geraadpleegd op 29november2022 op http://urn.fi/URN:NBN:fi:jyu-202105183003.
    [Google Scholar]
  32. Sparrow, B. et al. (2011). Google Effects on Memory. Cognitive Consequences of Having Information at Our Fingertips. Science. 233, 776-778. Geraadpleegd op 29november2022 op https://www.science.org/doi/pdf/10.1126/science.1207745
    [Google Scholar]
  33. Steurs, F. (2016). Taal is business. Taal, de turbo naar economisch succes!Schiedam.
    [Google Scholar]
  34. Steurs, F. (2019). Technologie en integriteit. In: Technologie, ethiek en beleid (pp. 81-92). Politeia. Geraadpleegd op 29november2022 op https://lirias.kuleuven.be/retrieve/542044+&cd=2&hl=nl&ct=clnk&gl=si
    [Google Scholar]
  35. Steurs, F., Vandeghinste, V. & Daelemans, W. (2022). Report on the Dutch Language. European Language Equality (ELE) Project (D1.10). [Red. Giagkou, M. et al.] Geraadpleegd op 29november2022 op https://european-language-equality.eu/deliverables/
    [Google Scholar]
  36. Toral, A. (2019). Post-editese: an exacerbated translationese. In Proceedings of the Machine Translation Summit XVII , Dublin, Ireland 19-23 August 2019, 273–281. Geraadpleegd op 29november2022 op https://aclanthology.org/W19-6627.pdf
    [Google Scholar]
  37. Toral, A., & Way, A. (2018). What Level of Quality can Neural Machine Translation Attain on Literary Text?ArXiv, abs/1801.04962. Geraadpleegd op 29november2022 op https://arxiv.org/pdf/1801.04962.pdf
    [Google Scholar]
  38. Vanmassenhove, E., Shterionov, D., & Way, A. (2019). Lost in Translation. Loss and Decay of Linguistic Richness in Machine Translation. In Proceedings of the Machine Translation Summit XVII , Dublin, Ireland 19-23 August 2019, 222-232. Geraadpleegd op 29november2022 op https://aclanthology.org/W19-6622.pdf
    [Google Scholar]
  39. Vintar, Š. (2019). Language in the age of dataism. Slovenščina 2.0. 7(1), 126-143.
    [Google Scholar]
  40. Vintar, Š. (2021). Z nevronščino v prihodnost. Alternator. Geraadpleegd op 29november2022 op https://www.alternator.science/sl/daljse/z-nevronscino-v-prihodnost/
    [Google Scholar]
  41. Wolf, M. (2018). Reader, Come Home. Harper Collins.
    [Google Scholar]
/content/journals/10.5117/IN2023.3.001.SREB
Loading
/content/journals/10.5117/IN2023.3.001.SREB
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error