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Abstract
Computational methods are in full swing in communication science. Part
of their promise is to make communication research more reproducible.
However, how this plays out in practice has not been systematically studied.
We verify the reproducibility of the entire cohort of 30 substantive and
methods papers published in the journal Computational Communication
Research (CCR), the official journal of the ICA Computational Methods
Division with a focus on transparency and hence a high rate of voluntary
Open Science participation in the field. Among these CCR papers, we are
not able to verify the computational reproducibility of 16 papers as no
data and/or code were shared. For the remaining 14 papers, we attempt
to execute the code shared by the original authors in a standardized
containerized computational environment. We encounter a variety of issues
that preclude us from reproducing the original findings, where incomplete
sharing of data or code is the most common issue. In the end, we could at
least partially reproduce the findings in only 6 papers (20%). Based on our
findings, we discuss strategies for researchers and the subfield to correct for
this disheartening state of computational reproducibility.
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REPRODUCIBILITY

Based on various yardsticks, the application of computational methods
in Communication Research is in full swing. Computational Communica-
tion Science has earned widespread consideration as a subfield of Commu-
nication Science (Hilbert et al., 2019). The Computational Methods division
of the International Communication Association (ICA CM) is one of the
fastest growing divisions of the association: its membership has doubled
every one to two years since ICA CM’s inception. There is also a steady sup-
ply of Communication papers using computational methods. According to
one estimate, 2% of papers in journalism studies journals in the last decade
used a computational approach (Zeng & Chan, 2023). Various traditional
Communication journals have published special issues devoted solely to
computational methods (e.g. Communication Methods & Measures 12:2,
International Journal of Communication 13, and Political Communication
38:1). And the most important yardstick—in our opinion—is the dedication
of an official ICM CM journal: Computational Communication Research
(CCR).

Two of the promises of computational methods for Communication
scholars are that it makes researchmore transparent andmore reproducible.
Computer code by design constitutes a detailed set of instructions on how
to perform a certain task. Hence, sharing it with other researchers makes
the steps taken to arrive at results highly transparent. Additionally, com-
putational methods should make analyses perfectly reproducible, as the
same code, running an analysis task on the same data, should always return
the same results. At the inauguration in 2019, the founding editors of CCR
committed to these promises in “A Roadmap of Computational Communica-
tion Research” (Van Atteveldt, Margolin, et al., 2019, Roadmap I hereinafter,
emphasis added):

“CCR demands transparent and reproducible research. Compu-
tational analyses require many choices regarding design, pre-
processing, and parameter tuning, and transparency are needed
to allow scrutiny of these choices. As digital data and analysis
code can be shared easily, computational research can be at the
forefront of the open science philosophy [...] Most articles in CCR
should be accompanied by an online appendix in a form that
encourages reproducibility and reusability. [...] For articles pre-
senting substantive and/or methodological analysis results and
data contributions,we expect an online research compendium
published on GitHub or an equivalent service. Such a com-
pendium contains the data, code, and results, and makes it
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explicit how the code is used to derive the results from the raw
data.”

However, in practice, sharing code and data publicly still comes with
obstacles 2 and the code to run an analysis does not only consist of the
high-level code generated by the researchers, but comprises many parts:
from hardware drivers, low-level operating system features and software
dependencies, such as R or Python packages and their dependencies, to
randomly generated numbers for sampling and bootstrapping. If code at
any stage changes, the efforts to make it possible for others to run analyses
again might have been futile or require extended additional efforts. Techni-
cally, the computational environment can be controlled by researchers and
documented for future reproducibility—if they are aware of issues, techni-
cally adapt enough, and willing to invest the effort. If not addressed by the
research community, however, we agree with Mede et al. (2020) in worrying
that the looming replication crisis could erode public trust in science as a
whole.

The demands for transparency and reproducibility in Roadmap I there-
fore deserve our special scrutiny. Not because we doubt the sincerity of
the commitment, but because we assume the computational subfield to be
ahead of others in Communication Science regarding the efforts (and strug-
gles) to make transparency and reproducibility the norm. We assume that
Communication Science mirrors other disciplines here, in which so-called
“Computational X” subfields 3 also grapple with reproducibility problems
(e.g. Hothorn & Leisch, 2011; Hutson, 2018; Ioannidis et al., 2009). Addressing
remaining issues we find today in the official ICA CM journal, which again
is probably the most committed to transparency and reproducibility, might
thus lay amore steady groundwork for the future of Communication Science
and help rectify questionable research practices of the past (Bakker et al.,
2021; Matthes et al., 2015). Our goal in this article is thus not to criticize the
efforts already made, but to highlight which problems remain in the com-
mendable efforts already undertaken to battle irreproducibility of research
findings.

This article fist presents an overview of important concepts and research
connected to transparency and reproducibility. It then describes the in-
clusion criteria for articles in our reproducibility analysis and how we con-

2It is important to reiterate that the founding editors of CCR expect that the online research
compendium containing data, code, and results to be published on GitHub or an equivalent
service. We interpret this as a general editorial expectation for data and code to be made
available publicly.

3https://writings.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/
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ducted the reproducibility tests. We discuss our results in terms of rate of
reproducibility, but more importantly also detail which issues we found to
make Computational Communication Science (ir)reproducible. Surpris-
ingly, at least to us, was the finding that missing data was the main culprit
that makes studies in CCR fail our tests, not any technological issue. We
end with reflections on what individual researchers and the (sub)field could
do to improve reproducibility of research to ensure the credibility of results
and improve the trust in academic work.

Transparency and Reproducibility

The first line of defense against irreproducibility, as stated in Roadmap
I, is “an online appendix in a form that encourages reproducibility and
reusability.” At the very least, this step would lead to more transparency:
Open Data and Open Materials (e.g. computer code). This call for data
and code sharing can also be found in the recent calls for Open Science
in Communication Science (Bowman & Spence, 2020; Dienlin et al., 2020;
Lewis, 2019).

Transparency in scientific publicationsmarks a significant advancement
beyond the traditional opaque publication model—like a secret magic trick,
research that completely lacks transparency is surely not reproducible. But
a paper with all the code and data made available does not automatically
become reproducible either (Peng, 2011). As defined by The Turing Way
Community (2022) along with several other authors (i.e., Broman et al., 2017;
Schoch et al., 2023), a result is reproducible “when the same analysis steps
performed on the same dataset consistently produces the same answer.”
Therefore, one must perform the same analysis on the same dataset, i.e.
execute the code with the data, and check whether the same answer can
be obtained consistently. The difference between transparency and repro-
ducibility is crucial as previous attempts to execute the code shared by
researchers showed that most of it does not run without issues (Crüwell
et al., 2023; Trisovic et al., 2022). Hence, despite great transparency, most of
these studies are, in fact, not reproducible.

In order to attempt to reproduce findings and check results under dif-
ferent circumstances, the shared code must at least be executable by other
parties using the samedata—whichhence alsoneeds to be shared. Anonline
appendix that can possibly enable executability was envisioned in “Toward
Open Computational Communication Science: A Practical Road Map for
Reusable Data and Code” (Van Atteveldt, Strycharz, et al., 2019, Roadmap
II hereinafter) by a similar group of authors as Roadmap I. It is important
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to note that the authors of Roadmap II emphasize reusability of data and
code, which they define as “allow[ing] and encourag[ing] other scholars to
adapt them to their specific needs.” Roadmap II does not focus on making
data and code executable by others per se. However, certain ideas from it
are helpful to achieve the same goal. For example, Roadmap II encourages
the use of research compendia to share fully documented data and code,
that the code and data should be version controlled and with unit tests, and
that the computational environment should be preserved as a Dockerfile.

Reproducibility of Computational Communication Science

Half a decade has passed since Roadmap I defined the grand vision of
the subfield Computational Communication Science as the forerunner of
transparent and reproducible research andRoadmap II laid out the practical
steps towards this vision. Still, little is known about how successfully this
grand vision was realized.

While we have some data on how (in)transparent the whole field of Com-
munication is (Haim & Jungblut, 2023; Knöpfle et al., 2024; Markowitz et al.,
2021), there is no data on whether the subfield, as presented by the articles
published in CCR, is improving the picture. This information can only be
gleaned by executing the code shared by Computational Communication
researchers—which we attempt in this study. Again, our most important
goal is to qualitatively document all details that make Computational Com-
munication Science (ir)reproducible and to identify avenues to improve the
reproducibility of the findings from the subfield.

Data and Approach

We attempt to reproduce all studies published in CCR. We set the date 2023-
05-25 as the “snapshot date” of this study. The snapshot date means this
current study is based on the published papers, materials (shared data and
code), and technology available on this day. There are caveats to this claim
(especially the last part) and we will explain these caveats in later sections.
On this date or within the perimeter of a fewmonths, the following actions
were taken.

On the snapshot date, we preregistered the research question (How
many papers published in CCR are not computationally reproducible?) 4 and

4Although our research question was preregistered as such (which we cannot change), it is
our intention to study this question from the third-party perspective, i.e. Howmany papers
published in CCR are not computationally reproducible by third parties, e.g. us?. The original
preregistration is available here: https://doi.org/10.17605/OSF.IO/EJCSK.
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protocol of the study.
In the protocol, we define the following events as failures to reproduce

the analyses: (1) No shared code, (2) No shared data, (3) Code execution
failure, despite code rewrite, (4) Technically executable, but results with
major deviations. These four criteria are an operationalization of computa-
tional reproducibility defined by Broman et al. (2017), Schoch et al. (2023),
andThe Turing Way Community (2022) (see above). Criterion 1 determines
whether we can conduct the same analysis. Criterion 2 determines whether
we can conduct the same analysis on the same data. Criterion 3 determines
whether we can check if the analysis consistently produces the same answer.
Criterion 4 determines whether the answer is indeed the same.

Our preregistered protocol established specific inclusion criteria for arti-
cles, limiting selection to thosewith results or outputs that canpotentially be
reproduced. Consequently, we only included articles that presented claims
grounded in empirical analyses. Based on the preregistered protocol, a
“postmortem guide” (see Appendix A) was authored as a guide to determine
the computational reproducibility using the artifacts generated from a code
execution attempt.

Data

All articles published in CCR up to the snapshot date were automatically
scraped from the CCR website. In total, 47 articles were identified. These 47
articles were annotated by three coders for the following information:

• Type of article: Empirical analysis (substantive / methodological),
Tool, Other (Theory paper etc.)

• Does the paper provide data on GitHub, OSF, or other repositories?

• Does the paper provide computer code onGitHub, OSF, or other repos-
itories?

We identified 30 empirical papers (21 substantive papers and 9 methods
papers), 13 tool presentations and 4 other papers. Among these 30 empirical
articles, only 14 articles provide code and data. Therefore, up to this point
we are not able to reproduce the findings from 46.7% of CCR papers, as 16
articles fulfilled Criterion 1 and/or 2 [1 only: 1, 2 only: 3, both: 12].

For the 14 papers initially coded with shared code and data, we will refer
to them here as Articles A to N rather than their original titles, similar to
Crüwell et al. (2023). This is because our focus is not these individual articles,
but how the characteristics of data and code sharing practices impact the
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computational reproducibility. A complete list, however, is available in the
Online Appendix: https://github.com/Kudusch/reprohack23 5.

Although materials on OSF are versioned, it is not possible to obtain the
versioned materials programmatically. To solve this, on the snapshot date
we archived all OSF materials of these 14 articles using the R package OSFR
(Wolen et al., 2020). All reproducibility checks involving OSF materials were
conducted with the archived copies.

Our Reproducibility Check Pipeline

We devise a reproducibility check pipeline for executing and document-
ing the reproduction of the included articles (see figure 1). This sections
highlights our choices regarding the computational environment; how we
resolved dependencies; how we executed the code; and how we checked
the outcome.

The reproducibility check was conducted inside a Docker container
based on ROCKER (Boettiger & Eddelbuettel, 2017), a container image based
onUbuntu Linuxwith preconfigured and versioned R.We added an optional
layer of Python environment based on PYENV (pyenv authors, 2023). We
pinned the version of R and Python to 4.3.0 and 3.11.3 respectively, the latest
version as of the snapshot date. The goal of this dockerized pipeline is to
fully automate the code execution in a standardized computational envi-
ronment, that is broadly representative of what is used by Computational
Communication researchers.

As most of the included articles do not provide a description of the
computation environment, we automatically resolved the dependencies
based on the shared code. The shared codewas either from the archivedOSF
copies or the associated GitHub repository up to the latest commit before
the snapshot date.

Shared R or Python code was scanned using RENV (Ushey, 2023) and
PIPREQS (pipreqs authors, 2023) to identify the employed R and Python
packages. For R packages, the system requirements (e.g. GNU SCIENTIFIC
LIBRARY) were also queried using REMOTES (Csárdi et al., 2021).

Based on the scanned result, the software dependencies of the shared
code were automatically installed inside the dockerized environment. We
used Posit Public Package Manager 6 and pinned the date to the snapshot

5Disclosure: One article in the set was authored by a coauthor of this paper. Because of that,
the concerned coauthor was not involved in the reproducibility check of that article.

6https://posit.co/products/cloud/public-package-manager/

CHAN ET AL. 7

https://github.com/Kudusch/reprohack23
https://posit.co/products/cloud/public-package-manager/


REPRODUCIBILITY

Obtain the data and code
from our OSF cache or GitHub

Execute the code

using R CMD BATCH or
jupyter nbconvert --execute

Yes

No

Errors during
execution?

Copy the artifacts out of the
Container

Minor code rewrite
(e.g. fixing file paths)

Major code rewrite
(e.g. fixing bugs)

Reconstruct
environment

(e.g. installing libraries)

Scan code and
 install dependencies

renv remotes pipreqs

Setup Docker container

R
v4.3.0

(Rocker)

Python
v3.11.3
(pyenv)

Figure 1: Reproducibility Check Pipeline
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date. By doing so, we made sure the latest versions of the R and Python
packages as of the snapshot date were installed.

The code execution part was developed as a single shell script file inside
a Docker container that does the following: (1) Obtain the data and code
from our OSF cache or GitHub; (2) Resolve and install dependencies auto-
matically; (3) Optional: Code editing, using eitherGNU SED (Pizzini et al.,
2018) or GNU PATCH (GNU patch authors, 2023)—to make the changes to
the original material transparent and reproducible; (4) Execute the code;
and (5) Copy the artifacts out of the Container for postmortem analysis (see
Appendix A).

For the 14 articles, we attempted to execute the shared code in the above-
mentioned Docker container. Exceptions are: 1) two Jupyter notebooks,
which the authors of article B and article H recommend to run on Google
Colaboratory; 2) Article J, for which the authors have prepared a description
of their computational environment based on PACKRAT (Atkins et al., 2023).
We followed the recommendations accordingly.

This procedure was iterative and the preregistered protocol allows the
following three actions when the code execution attempt was not successful:

1. Minor code rewrite: When the execution failure was related to incor-
rect file paths, we edited the paths and attempted to rerun the code.
We classified only the editing of file paths as minor code rewrite.

2. Major code rewrite: When the execution failure was related to code
quality issues, i.e. bugs, we attempted to correct for the bugs and
rerun. We classified this editing as major code rewrite.

3. Reconstruct a customized computational environment: When the
execution failure was related to software libraries and our automatic
pipeline did not resolve them, we attempted to create a customized
computational environment for the code to run on.

If all three actions cannot make the code executable, the article satisfies
Criterion 3 – code execution failure, despite code rewrite.

After code execution, we conducted a postmortem analysis based on
the aforementioned postmortem guide (Appendix A): We compared the
artifacts generated from the code execution attemptwith either the archived
artifacts from the original repositories or from the results on the papers to
look for deviations. We followCrüwell et al. (2023) to defineminor deviations
as “deviations in the decimals or obvious typographical errors.” Deviations
beyond decimals are classified as major deviations. We follow also Crüwell
et al. (2023) to use the distinction betweenminor andmajor deviations as
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the cut-off point 7, i.e. papers with major deviations satisfy Criterion 4. The
reasons for a paper satisfying Criterion 4 can either be that the code itself
cannot consistently produce results within a small window of deviations in
decimals; or that the code can produce consistent results, but there were
human errors in reporting.

Results

Quantitative Results

In this section, we present our findings in terms of howmany of the attempts
we consider a success or failure in reproducing the selected articles, followed
by our qualitative assessment about bothmajor andminor issues uncovered
during our analysis in the next sections. Among the 14 articles we were
able to evaluate, we confirmed that Articles H (with major code rewrite),
E (with minor code rewrite) and M (with no code rewrite) are essentially
reproducible. Articles B (with major code rewrite) and N (with minor code
rewrite) are largely reproducible, except parts of the analyses reported in
the Appendices, for which some data files were missing. Similarly, Article
J is largely reproducible; except we detected a missing file in the feature
extraction demo that stopped us from running it (the processed data is
available). As these problems do not affect the analyses presented in the
main body of the article, we deem Articles J, B and N partially reproducible
8. Therefore, 20 % of articles in CCR that made claims based on empirical
analysis and 42.9 % of the articles that shared code and data are at least
partially reproducible.

Amongall other articles, the code executionattemptswerenot successful

7Crüwell et al. (2023) use three categories: “exactly reproducible” (nodeviations), “essentially
reproducible” (with minor deviations), and “largely not reproducible” (with major deviations).
For simplicity, we merged “exactly reproducible” with “essentially reproducible” into one
category. Although it did not state in the original definition, we understood that the minor
deviations in the decimals should not affect the conclusion. For example, rounding of p-
value from 0.32 to 0.4 would be a minor deviation that does not affect the main conclusion.
However, for precise measurements, e.g. effect sizes, a change from 0.32 to 0.4 might change
the conclusion substantially.

8We did not preregister what to do with the code for analyses not in the main body of
an article, i.e. supplementary analyses in online appendices. Our decision was to run the
code beyond the main analysis anyway (if it is available). We made an ad hoc decision that
irreproducibility in the supplementary analyses does not satisfy Criteria 3 and 4 but report
it here. This can be considered a deviation from the preregistration. As Crüwell et al. (2023)
considermain analyses only, our decision should be at least principled. However, given the field
difference and supplementary analyses are common in our subfield, further studies should
consider how to deal with (ir)reproducibility beyond the main analysis.
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Ran as is

Minor Code rewrite

Major Code rewrite

Answer deviates

Code can't be executed

Shared code but no data

No shared code

Nothing to reproduce

Figure 2: Types of (ir)reproducibility in CCR articles.

despite code editing for Articles D, L, F, K, A, and I (satisfied Criterion 3). In
case of Article C, we think that itmight be possible to eventually reproduce it.
Yet after rewriting individual files and creating a customized computational
environment, as some required packages can only be installed with Python
3.8, we conceded when it became clear that we do not understand in which
order to run the many different steps included in the sophisticated analysis
pipeline. The code and data associated with Article G (with major rewrite)
are executable but the output has major deviations (satisfied Criterion 4) 9.

Figure 2 shows an overviewof the results within the set of all 47 published
CCR articles. Below we summarize the major and minor issues that kept us
from reproducing the tested articles.

Major Issues

Incomplete Sharing of Data and Code

Incomplete SharingofData andCode is the leading causeof irreproducibility
among these 14 articles—which comes on top of the 16 that completely failed
to share data and/or code. While these articles were initially categorized

9We cannot confirm the actual reason for this. But it is very unlikely to be human errors in
reporting because the inconsistent results are in the figures generated by code. Instead, we
have reasons to believe that the code of Article G for data visualization is incomplete.
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as having shared both data and code, upon attempting code execution,
we found that certain elements of the code or data were, in fact, missing.
These omissions seem like simple oversights, as the repositories appear to be
comprehensive. It was only through our reproduction attempts that these
small, yet consequential gaps came to light. The incompletely shared data
and code render these articles satisfying Criterion 3 (code execution failure,
despite code rewrite). As mentioned previously, even the three articles
deemed partially reproducible base some of their analyses on data not
included in the shared material.

The incomplete sharing manifests in different forms: (1) sharing only
example data to demonstrate the feature extraction pipeline but no actual
data as well as the code for data analysis (Articles L and F); (2) Some data
is shared but that cannot be used to run the provided code (Article A); (3)
Missing data columns in the provided data (Article I); (4) Data is complete
but the code for generating some variables is missing (Article D); (5) Mate-
rials essential for running the code (e.g. list of stopwords) is not available
(Article I).

Social Media Data Antics

A related issue to the incomplete sharing of data is the reliance on online
access to social media data. When the access is no longer available, the
inaccessibility manifests itself similarly to the issue above.

Article K provides over 50,000 Tweet IDs. Sharing IDs is the only per-
mitted way of sharing data obtained from the Twitter API. In July 2023, we
cannot rehydrate, i.e. retrieve the Tweets’ complete information using their
IDs, for free using the API provided by X Corp. 10. We can either rehydrate
10,000 IDs per month for a total of USD600 (which would take 6 months); or
rehydrate all IDs in one month for USD5000. Admittedly, we have neither
the money nor the time.

A relativelyminor issue related to this is that the feature extractiondemos
associated with Article B and Article H use YOUTUBE-DL to download videos
from YouTube. This approach did not work in July 2023, with either the
stable version of YOUTUBE-DLonPyPi or the development version onGitHub.
Despite not being illegal, as some use cases, including academic research
of publicly available videos, constitute fair use (Hennesy & Samberg, 2019),
YouTube and other companies continue to fight YOUTUBE-DLwith legal and
technicalmeans to hinder its usage. As already pointed out by Freelon (2018),

10https://web.archive.org/web/20230728143607/https://developer.twitter.com/en/
developer-terms/more-on-restricted-use-cases
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availability of social media data is up to the whims of the companies who
provide access to it and will probably further decrease in the future.

Minor Issues

Incomplete Sharing of Code

Even for the reproducible articles, some code for runningminor parts in the
analytical pipeline ismissing. Themissing parts concernwith statistical tests
(Article E), data visualization (Article M), and summary statistics (Article J).

Code Quality Issues

Our code execution attempts were in batch, e.g. using R CMD BATCH or
jupyter nbconvert –execute. Some of the issue we encountered are
likely because the code inquestionwasdevelopedandchecked interactively
only. This generates two issues. First, most visualization functions do not
save the generated figures as files. Therefore, many researchers seem to rely
on a tedious and error-prone manual process of saving the figures from the
development environment such as RSTUDIO or JUPYTER NOTEBOOK. Second,
scripts that should be run in sequence might demand unsaved objects from
the previous script to be present in the memory (or “workspace”) for the
current script to run (Article G). Another code quality issue we encountered
andwhich required code editing, is the use of hardcoded absolute paths and
other assumptions about the availability and structure of certain directories
and files.

Insufficient Documentation

Some code did not contain any documentation (e.g. Articles D and G). For
those cases, we had to guess how to execute the code. Mostly, this was
relatively simple, although, as explained above, Article C contains a rather
sophisticated analysis pipeline, which we were not able to retrace, turning
the lack of documentation from aminor into a major issue in that case.

Undocumented Computational Environment

Only three articles clearly documented the computational environment
used for the original analysis. This lack of documentation of the compu-
tational environment generates two layers of problems. The first layer is
the operating system. The code associated with Article H does not contain

CHAN ET AL. 13



REPRODUCIBILITY

any information on the original computational environment. We were not
able to execute the code in the dockerized Linux environment successfully,
until we found out that the R function list.files behaves differently on
Windows and Linux.

The second layer is the software library. The code associated with Article
F, for example, does not provide any information on the computational
environment, e.g. which version of PANDAS was used. In the code, many
deprecated functions of PANDAS were used and we needed to rewrite the
code substantially to make it executable with the current version as of the
snapshot date.

Discussion and Conclusion

This is so far the first study to evaluate the computational reproducibility
of published Communication Research studies systematically. As is often
the case in life, we derive good and bad news from our scrutiny of the repro-
ducibility of articles published in CCR. We offer the bad news first: For CCR,
a journal with a higher-than-average rate of data and code sharing, 80%of all
empirical papers and 57.1 % of the articles that shared code and data are not
reproducible by third parties. However, our check is only possible because of
the high data and code sharing rate (46.7%). Given the fact that the average
of data and code sharing is less than 5% in other Communication journals
(Haim & Jungblut, 2023; Knöpfle et al., 2024), the pool of studies included
here is certainly not representative and the share of irreproducible articles
we report might be an underestimation of the actual number for the entire
subfield of Computational Communication Science. If we consider more
Communication journals, more papers would fall into Criterion 1 or 2 and a
higher proportion of papers would be computationally irreproducible by
third parties.

With 80% of the empirical papers being not reproducible by third parties
(57.1 % were code and data was shared), the grand vision in Roadmap I
has not (yet) been realized. On the contrary, the subfield is on the brink to
descend into a reproducibility crisis like other Computational X disciplines,
if not already in a full crisis. Corrective actions must be taken. Our study
also gives flesh and blood to the recent calls for more Open Science for the
field of Communication Science (Bowman & Spence, 2020; Dienlin et al.,
2020; Lewis, 2019).

On that note, more bad news we derive from our check is a confir-
mation that simply providing code and data—what we might term ’basic
transparency’—is just a starting point and not a guarantee of computational
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reproducibility. It is themeaningful first step to pass Criteria 1 and 2, but still
not sufficient for fostering computational reproducibility: As Crüwell et al.
(2023) and Trisovic et al. (2022) have noted before, most shared code is not
executable without further actions. Our check confirmed that more than
half of the shared code associated with CCR publications is not executable
even with code rewrite. The most common is the incomplete sharing of
data and code. Applying the software engineering term, this is a “runtime
error”, in contrast to “compile-time error” where we know before the code
execution that the study is not reproducible, e.g. satisfying Criteria 1 and 2.
“Runtime error” can only be found by the often tedious process of (manual)
code execution. Thismanual check by third parties is not scalable: We (three
researchers) took six months of our time just to check the computational
reproducibility of 30 empirical papers. For comparison, ICA CM received
201 submissions in 2021 alone. Applying the same scale, we would take more
than 3 years to check one year of ICA CM submissions manually.

The good news, on the other hand, is that there are still some published
CCR papers that were found to be computationally reproducible. We can
learn from these papers to improve the computational reproducibility of
our works. See the “Recommendations for researchers” below.

Before diving into those recommendations, we would like to stress an
important point from our analysis: For most CCR articles, our code execu-
tion attempts were not blocked by technological issues. Instead, it is due
to the lack of reproducible materials in the first place (Criteria 1 and 2). The
technical recommendations we give might take up most of the room in this
part of our article, yet this is mostly a function of these tips being relatively
straightforward to implement by junior researchers—such as ourselves. The
field as a whole must not fall into the trap of so-called Technological Solu-
tionism to “fix” the lack of transparency by perhaps yet another software
tool to support computational reproducibility. The most effective way to
save the subfield from the crisis is for the incentive system to change. We
also provide several suggestions to the subfield to support greater research
transparency, which we hope journal editors and senior researchers in the
field will focus on.

Recommendations for Researchers

Execute and Check Code in Batch

The development of analytical pipeline with interpreted languages such as
R and Python is usually interactive using tools such as the Read–Eval–Print
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Loop (REPL) or Jupyter Notebook. Interactive development is in fact an ad-
vantage of using interpreted languages and should be encouraged. However,
we strongly recommend researchers executing and checking their devel-
oped code in batch (e.g. R CMD Batch, Rscript, jupyter nbconvert
–execute, or quarto render). This is because interactive tools such as
Jupyter Notebook do not enforce sequential execution and one can run the
code in arbitrary order (Samuel &Mietchen, 2023). With batch execution, it
is easier to identify simple errors such asmissing files or undefined variables.
Ideally, researchers design their project with the goal in mind that the entire
analysis pipeline can be re-created by running scripts for data gathering,
processing, analysis and summarizing (e.g., in plots and tables) in order.
Researchers can also use a research compendium (next recommendation)
and its associated features to ensure the sequential execution of code.

Use Research Compendium

Both Roadmap I and Roadmap II recommend the adoption of research
compendia. The Turing Way (The Turing Way Community, 2022) defines
a research compendium as “a collection of all digital parts of a research
project including data, code, texts (protocols, reports, questionnaires, meta
data). The collection is created in such a way that reproducing all results is
straightforward.”

In practice, a research compendium separates documentation, code,
raw data, intermediate data, and results in a reasonable folder structure.
Using a research compendium, together with tools such as HERE (Müller,
2020), or by adopting relative paths in RMarkdown/Quarto documents, can
eliminate the most common reason for the code editing we did to make
code run: incorrect file paths.

Two reproducible articles have their shared code and data organized as
a research compendium: Articles H and N. Although not as a research com-
pendium in a strict sense, Articles M, J, and B provide good documentation
on how to reproduce the analysis and Article E separates code and data.

Several research compendium templates are already available, one of
which developed by Communication researchers (Van Atteveldt et al., n.d.).
Article N uses this template, which made the reproduction attempt consid-
erable more straightforward. Inside the research compendium of Article N,
the entire article was written in RMarkdownwith PAPAJA (Aust & Barth, 2022)
using the literate programming technique (mixing of prose with program-
ming code, Knuth, 1984). Several of the reproducible articles (e.g. Articles B,
E) also use some forms of literate programming. Literate programming elim-
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inates the need for the error-prone copy and paste of figures and statistical
tests andwas recommended in Roadmap II and by Lewis (2019). Historically
it was difficult for Communication researchers to use literate programming,
because Communication journals usually accept Microsoft Word only (CCR
once did). The recent introduction of Quarto and LATEX templates by CCR is
a boon for promoting literate programming to the subfield 11.

A good practice to ensure sequential execution of scripts is to name
the scripts by their execution order, e.g. 01_setup.R, 02_preprocess.R 12,
which Articles J and H use. Another approach is to use build management
tools such as GNUMAKE (Stallman et al., 1988, Article N uses this) and DOIT
(Schettino, 2021, which the original compendium uses).

Finally, the computational environment can also be documented inside
the research compendium. This can be done either as a document listing
all dependencies and their versions (e.g. Aricle N) or better, as a Dockerfile
(e.g. Article J) to enable reproducible rebuild.

Reduce External Dependencies

We can dial back the clock for software versions; but the same cannot be
said about external dependencies. Schoch et al. (2023) define external de-
pendencies as parts in the research pipeline that some external entities
have complete control, but researchers using those parts have not. Because
researchers—including the reproducibility checkers (e.g. us)—have no con-
trol over these external dependencies, almost nothing about these external
dependencies can be donewhen they are themain culprits of irreproducibil-
ity. For instance, we cannot dial back the clock for Twitter’s API to its 2021
state for Article K (see Assenmacher et al., 2023); neither can we dial back
the clock for YouTube where YOUTUBE-DL still works for Articles B and H.
It is only luck that the external dependencies in the analytical pipelines of
some articles still work (Downloading a dictionary and language models
during the code execution attempts for Articles L and F). Relying on exter-
nal dependencies for data collection might be unavoidable, depending on
the goal of the research. But they should be avoided where possible when
offering reproduction materials (e.g., Gruber et al., 2023; Schoch et al., 2023).

Although not in our cohort of articles, external dependencies also mani-
fest as data analytic APIs, e.g., Google Translate, Botometer, and Microsoft’s

11https://computationalcommunication.org/ccr/announcement/view/4. This article was
written in LATEX on Overleaf. We used SWEAVE (Leisch, 2002) together with KNITR (Xie, 2014) to
enable literate programming

12See this presentation by Jenny Bryan: https://github.com/jennybc/how-to-name-files
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Face API. The practice has been criticized because of the changing algo-
rithms at the server end (Chan et al., 2020; Chen et al., 2023; Rauchfleisch
& Kaiser, 2020). Like social media APIs, they can have the same destiny:
Botometer, since June 2023, is no longer available due to the closure of the
free Twitter API 13. This serves as a wake-up call to the subfield that the
reliance on external dependencies is a silent threat to computational repro-
ducibility (Davidson et al., 2023; Schoch et al., 2023) and should be avoided
where possible. For example, the offering of OpenAI (a profit-seeking ex-
ternal entity, like X Corp.) to make the best state-of-the-art large language
models (LLMs) available as an affordable commercial service via their API
might be tempting for social science researchers. However, we need to
recognize that they do not provide the same route to long-term reproducibil-
ity that open source LLMs offer. As these models often perform similarly
(Weber & Reichardt, 2024), the field should consider trading a little per-
formance for a significant improvement in reproducibility to evade a new
generation of irreproducible research when OpenAI retires older models
or makes them unaffordable through price increases. Rather than relying
on external dependencies simply for the reason that they offer the best per-
formance, the field should take into consideration which approach offers
the best performance-reproducibility ratio. Which tips the scale in favor of
open source software and models that can be deployed in an environment
controlled by the researcher (e.g., locally) (Schoch et al., 2023).

Proactive Reproducibility

The retroactive approach to reproducibility is tomake the analytical pipeline
“reproducible” after the fact. This retroactive approach explains an often-
cited reason for researchers’ reluctance to share their code: time and effort
to edit the code to make it shareable (Cadwallader & Hrynaszkiewicz, 2022).

Other than the perceived effort for editing the code, we also observed
during our execution attempts that the retroactive code editing can intro-
duce new bugs into the shared code. One emblematic minor edit we did
to correct for this kind of bugs was to change the call for the data file ccr_-
data_share.csv in the code back to data.csv for Article B, where only
the file data.csv is available.

We highly recommend that researchers should instead take a proactive
approach to reproducibility, in which reproducibility is a built-in feature
from the beginning. With this approach, code does not require any—ormore
realistically, any effortful—editing to be shareable. Data files are tiered by

13https://botometer.osome.iu.edu/
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whether or not they canbe shared to eliminate the risk of incomplete sharing
or accidentally sharing of sensitive data. Automatic reproducibility checks
such as continuous integration might also be used. The computational
environment should also be captured by technologies such as Docker and
Apptainer.

To take this approach, the analytical pipelinemust be carefully designed
andCommunication researchersmight not have the knowledge tobuild it on
their own. One approach is for Communication researchers to collaborate
with research software engineers when designing the analytical pipeline.
Educational resources such asThe TuringWay (The TuringWay Community,
2022) are also available.

Recommendations for the Subfield

доверяй, но проверяй

The Russian proverb доверяй, но проверяй (trust, but verify) was quoted
by Ronald Reagan during the arms control negotiation with Mikhail Gor-
bachev in 1987. The same principle has been used by Willis and Stodden
(2020) to evaluate the computational reproducibility of published scientific
works. We trust the papers that we found to be irreproducible are proba-
bly computationally reproducible by the original authors on the machine
they conducted the original analysis on. However, the goal should be that
reproducibility can also be verified by anyone, everywhere, at any time.
There is a need to move beyond the so-called “first-order computational
reproducibility” (Schoch et al., 2023) or “repeatability” (McArthur, 2019),
which cannot be independently verified.

Increasingly often, publication outlets require the reproducibility to be
verified by third parties. Some publication outlets assign data editors to
actively check for reproducibility of submissions (Vilhuber, 2023). In the
realmof Communication Science, Political Communication is the first outlet
to assign a data editor (Lawrence, 2022). This practice should be promoted.

As wementioned previously, it took a lot of energy to check for the repro-
ducibility of published items manually and we offer two solutions. The first
solution is to make the data editor position funded to compensate for the
time the data editor took to check for reproducibility, which Political Com-
munication does. The second solution is to make the reproducibility check
as effortless as possible. We provide several suggestions in the “Standardize
the reproducible computational environment” section below.
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Incentivize Data and Code Sharing

Non-sharing of code and data is still the most common reason for irrepro-
ducibility (53.3%). As many have argued (e.g. Rowhani-Farid et al., 2017; Van
Panhuis et al., 2014), this is largely not a technological issue. The data and
code sharing infrastructures have been verymature inmany countries, espe-
cially industrialized ones. In fact, a recent survey found the counterintuitive
relationship that higher scientist satisfaction with data sharing resources is
associated with a lower willingness to share data (Borycz et al., 2023).

The willingness to share is an incentive issue (Akdeniz et al., 2023). Shar-
ing of data and code is not required for publication inmanyCommunication
journals (including CCR). Whether or not data and code sharing can impact
citations in Communication Science remains inconclusive (Markowitz et al.,
2021). There is de facto no incentive to share data and code. Schoch et al.
(2023) argue that without significant incentives, sharing of data and code is
mostly driven by moral responsibilities.

However, history toldus that relianceonbonafides for behavioral changes
does not scale up. The subfield must come up with carrots—hopefully not
sticks—to induce researchers to share their data and code alongside their
publications. We—the authors, some junior researchers—are not in the
position to prescribe these field-level interventions for the subfield. How-
ever, Communication researchers should believe in the possibility of the
(sub)field to come up with a good solution to this issue, as evidenced by
previous field-wise efforts such as the 70th Annual ICA Conference in pro-
moting Open Science; and the data and software citation clause in ICA CM’s
Call for Papers since 2021.

We quoted доверяй, но проверяй previously. As a reply to Reagan, Gor-
bachev quoted “the reward of a thing well done is to have done it” (allegedly
by RalphWaldo Emerson). It also partially answers the incentive question.

Encourage Protected Access for Sensitive Data

Another obstacle for data sharing is the sharing of sensitive data. Most CCR
articles we checked use sensitive data, such as social media data (obtained
via restrictive APIs) and copy-righted data, and they are not publicly share-
able. Communication researchers have come up with several solutions to
this issue: Non-consumptive research (Gruber et al., 2023; Van Atteveldt
et al., 2020) (providing access to data analysis capabilities of data without
granting access to the often sensitive data itself) and sharing of encrypted
data publicly (Van Atteveldt et al., n.d.) are two proposals. Practically in the
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cohort of CCR papers, researchers shared the processed intermediate data
together with the code for data preprocessing, e.g. Articles J, E, and N.

A less technical solution is to promote “protected access” (or “controlled
access”), a notion that is used by the journal Psychological Science 14. Re-
searchers can deposit sensitive data to approved protected access reposito-
ries (APARs) 15. These repositories take care of the access control of deposited
data. For example, if one would like to reproduce the analysis of a paper
using a sensitive dataset deposited in an APAR, the APAR would require a
formal application for data access. Therefore, the data deposited in APARs
have a better care and the APARs have a paper-trail of who has a copy of the
sensitive data. In other words, protected access is muchmore trustworthy
than the so-called “available upon request” (Krawczyk & Reuben, 2012), both
in terms of future access and the risk of leaking sensitive data.

As long as someone other than the original authors (“trusted third par-
ties”, e.g. data editor or other researchers) can have access to that sensitive
data and reproduce the analysis, Schoch et al. (2023) classify this as second-
order computational reproducibility.

Standardize the Reproducible Computational Environment

Our check shows that most of the shared code and data available can run
in a standardized computational environment based on an off-the-shelf
Docker image (Boettiger & Eddelbuettel, 2017), albeit most of the time code
editing was needed. The computational environment we used can be rebuilt
reproducibily and the edited code can run inside it automatically. Hence,
our computational environment should fit a majority of the use cases. It
points to a possibility of having a standardized, reproducible computational
environment for running and checking the code of Computational Commu-
nication Science.

To eliminate the need for manual code editing when checking, Com-
putational Communication researchers would need to proactively develop
the analytical pipeline for this standardized computational environment.
If the subfield can even agree upon how the code should be executed in-
side this standardized computational environment (e.g. GNUMAKE), that
would enable automatic code execution for checking the reproducibility of

14https://www.psychologicalscience.org/publications/psychological_science/
ps-submissions

15A list of APARs is available in https://osf.io/tvyxz/wiki/. Examples are Inter-university
Consortium for Political and Social Research (ICPSR) at the University of Michigan, Research
Data Repository at the University of Bristol, and Datorium at GESIS – Leibniz Institute for the
Social Sciences.
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Computational Communication Research, rather than the tedious manual
code execution like we (andmany other) did. This automatic process can
be run anywhere Docker can run, e.g. Binder, GitHub Actions, and Heroku.
The elimination of the tedious manual tasks canmake the reproducibility
verification of a submitted paper immediately available to the reviewers so
that it can be taken into account.

Having a standardized computational environment requires a concerted
effort, or else it would descent into the “XKCD 927” problem 16. Although we
demonstrate our proposed computational environment works practically,
academic groups such as ICA CM together with and a consortium of journal
editors are in a better position to derive this standard.

Coda: Trade-offs

“Programmers know the benefits of everything and the trade-offs of nothing”,
said Rich Hickey, the inventor of the Clojure language. We probably were
too much in the programmer mode in the above discussion and therefore
we quote Hickey here as a self-criticism. It is important to remind ourselves
once again, computational reproducibility is not wholly a technological
issue, but in large part a social issue. When dealing with social issues, we
must know trade-offs more so than in dealing with technological issues.

The above discussion focuses only on the availability of data and code, as
well as the softwareused for executing the code. An issue thatwas completely
ignored in the above discussion is computational resources. For example,
we took weeks to check the code of Article M on an off-the-shelf notebook
computer due to the exceptionally long running time. For Article J, the demo
code for video feature extraction demands specific hardware and drivers.
We happened to get access to both, but nevertheless failed to get that code
run due to a missing script in the shared code—at least we were unable to
find it.

Our omission of discussing computational resources is intentional: we
personally have inadequate resources to reproduce the most sophisticated
approaches currently employed in the field—let alone running many of
them in succession. But someone else might not face this issue. However,
Computational Communication Science will probably becomemore com-
putational intensive in the future and it renders the task of computational
reproducibility check like oursmore demanding. Environmentally speaking,
computational power should now be considered as a scarce resource due
to the greenhouse gas emission associated with it (Wu et al., 2022). Repro-

16XKCD 927, How Standards proliferate: https://xkcd.com/927/
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ducibility checks like ours could be perceived as wasteful, if one sees no
value in such duplicated efforts—the re in reproducibility.

Another omission in our discussion is that our suggestions increase the
workload of Computational Communication researchers, whose time is
already in scarcity. Getting reproducibility right is difficult, as seen in the
code editing we needed to do even for articles we found to be reproducible.
Although we have suggested automating this process as much as possible,
there is still an upfront cost to learn about the tools and to write cleaner
code—although we think these investments would produce considerable
returns eventually. It circles back to the incentive question. Again, we have
no solution.

Lastly, we want to acknowledge that it should not be expected that every
(Computational) Communication scholar has the same level of computa-
tional expertise as the authors of the articles analyzed in this study. Even
with computational methods’ rising popularity, computational methods
are only a part of the larger canon of methods used in the field. Our recom-
mendations should thus not be understood as indispensable prerequisites
to Communication research in general, but as guidelines specifically for
making Computational Communication Research more reproducible. We
believe that researchers who are building their computational expertise can
benefit from code that has been written with reproducibility in mind, as it
enables them to execute and inspect other’s work without having to solve
issues like outdated dependencies. Reproducibility should always be seen
as an enabler of quality research, not a deterrent.
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Postmortem guide

Step 1: No Code and/or No Data -> [rating: Not verifiable], STOP; otherwise goto Step 2

Step 2: Run the code

If executable -> [executable: 1] -> goto Step 3; otherwise goto step 2.1

Step 2.1: Edit the paths and rerun

If executable -> [executable: 1], [rewrite / edit: 1] [document all edited lines] -> goto Step 3;
otherwise goto Step 2.2

Step 2.2: Edit the code and rerun

If executable -> [executable: 1], [rewrite / edit: 2] [document all edited lines] -> goto Step 3

If not executable ->

if the non-execution related to code issues -> [rewrite / edit: 2], [executable: 0] -> goto Step 5

If the non-execution related to external libraries -> goto Step 2.3

Step 2.3: Produce a customized Docker image and rerun

If executable -> [executable: 1], [rewrite / edit: depends on step 2.2] [dockerize: 1] -> goto
Step 3; otherwise [dockerize: 1], [executable 0] -> goto Step 5

Step 3: Check for code completeness with the paper

If some parts are missing -> [code_type: insufficient] -> goto Step 4; otherwise [code_type:
complete] -> goto Step 4

Step 4: Check for deviations with the paper

Unknown, uncheckable -> [major deviations: 99] -> goto step 5

Any result with any minor deviation (“minor deviations in the decimals or obvious typographical
errors”) -> [major deviations: 2] -> goto Step 5

Any result with any major deviation (any deviation larger than decimals) -> [major deviations:
1] -> goto step 5

Otherwise, i.e. exact -> [major deviations: 0] -> goto Step 5

Step 5: Code the following variables: laptop, special equipment, external_dependencies,
doc_steps, doc_literate, doc_literate_complete; give recommendations, log name, STOP
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