2004
Volume 4, Issue 2
  • E-ISSN: 2665-9085

Abstract

Abstract

Social media data offers computational social scientists the opportunity to understand how ordinary citizens engage in political activities, such as expressing their ideological stances and engaging in policy discussions. This study curates and develops discussion quality lexica from the Corpus for the Linguistic Analysis of Political Talk ONline (CLAPTON).

Supervised machine learning classifiers to characterize political talk are evaluated for out-of-sample label prediction and generalizability to new contexts. The approach yields data-driven lexica, or dictionaries, that can be applied to measure the constructiveness, justification, relevance, reciprocity, empathy, and incivility of political discussions. In addition, the findings illustrate how the choices made in training such classifiers, such as the heterogeneity of the data, the feature sets used to train classifiers, and the classification approach, affect their generalizability. The article concludes by summarizing the strengths and weaknesses of applying machine learning methods to social media posts and theoretical insights into the quality and structure of online political discussions.

Loading

Article metrics loading...

/content/journals/10.5117/CCR2022.2.005.JAID
2022-10-01
2024-11-08
Loading full text...

Full text loading...

/deliver/fulltext/26659085/4/2/CCR2022.2.005.JAID.html?itemId=/content/journals/10.5117/CCR2022.2.005.JAID&mimeType=html&fmt=ahah

References

  1. Baxter, L. A. (2006). Communication as dialogue. GJ Shepherd, J. St. John, & TG Striphas (Eds.), Communication as—: Perspectives on theory, 101–109.
    [Google Scholar]
  2. Beauchamp, N. (2020). Modeling and measuring deliberation online. In The oxford handbook of networked communication.
    [Google Scholar]
  3. Berry, J. M., & Sobieraj, S. (2013). The outrage industry: Political opinion media and the new incivility. Oxford, UK: Oxford University Press.
    [Google Scholar]
  4. Chen, G. M. (2017). Online incivility and public debate: Nasty talk. Cham, Switzerland: Palgrave Macmillan.
    [Google Scholar]
  5. Danescu-Niculescu-Mizil, C., Sudhof, M., Jurafsky, D., Leskovec, J., & Potts, C. (2013). A computational approach to politeness with application to social factors. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 250–259). Sofia, Bulgaria: Association for Computational Linguistics.
    [Google Scholar]
  6. Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). Automated hate speech detection and the problem of offensive language. In Proceedings of the Eleventh International AAAI Conference on Web and Social Media (pp. 512–515).
    [Google Scholar]
  7. Dobbrick, T., Jakob, J., Chan, C.-H., & Wessler, H. (2021). Enhancing theory-informed dictionary approaches with “glass-box” machine learning: The case of integrative complexity in social media comments. Communication Methods and Measures, 1–18.
    [Google Scholar]
  8. Erlich, A., Dantas, S. G., Bagozzi, B. E., Berliner, D., & Palmer-Rubin, B. (2021). Multi-label prediction for political text-as-data. Political Analysis, 1–18.
    [Google Scholar]
  9. Esteve Del Valle, M., Sijtsma, R., & Stegeman, H. (2018). Social media and the public sphere in the Dutch parliamentary Twitter network: A space for political deliberation?Hamburg, Germany: ECPR General Conference.
    [Google Scholar]
  10. Fournier-Tombs, E., & Di Marzo Serugendo, G. (2019). Delibanalysis: Understanding the quality of online political discourse with machine learning. Journal of Information Science, 0165551519871828.
    [Google Scholar]
  11. Friess, D., & Eilders, C. (2015). A systematic review of online deliberation research. Policy & Internet, 7 (3), 319–339. doi: 10.1002/poi3.95
    [Google Scholar]
  12. Gastil, J. (2008). Political communication and deliberation. Los Angeles, CA: SAGE Publications.
    [Google Scholar]
  13. Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political analysis, 21 (3), 267–297.
    [Google Scholar]
  14. Halpern, D., & Gibbs, J. (2013). Social media as a catalyst for online deliberation? Exploring the affordances of Facebook and YouTube for political expression. Computers in Human Behavior, 29 (3), 1159–1168. doi: 10.1016/j.chb.2012.10.008
    [Google Scholar]
  15. Himmelroos, S. (2017). Discourse quality in deliberative citizen forums – A comparison of four deliberative mini-publics. Journal of Public Deliberation, 13 (1), Article 3.
    [Google Scholar]
  16. Jaidka, K. (2022, June). Developing a multilabel corpus for the quality assessment of online political talk. In Proceedings of the language resources and evaluation conference (pp. 5503–5510). Marseille, France: European Language Resources Association. Retrieved from https://aclanthology.org/2022.lrec-1.589
    [Google Scholar]
  17. Jaidka, K., Zhou, A., & Lelkes, Y. (2019). Brevity is the soul of twitter: The constraint affordance and political discussion. Journal of Communication, 69 (4), 345–372.
    [Google Scholar]
  18. Jaidka, K., Zhou, A., Lelkes, Y., Egelhofer, J., & Lecheler, S. (2022). Beyond anonymity: Network affordances, under deindividuation, improve social media discussion quality. Journal of Computer-Mediated Communication, 27 (1), zmab019.
    [Google Scholar]
  19. Jakob, J., Dobbrick, T., Freudenthaler, R., Haffner, P., & Wessler, H. (2022). Is constructive engagement online a lost cause? toxic outrage in online user comments across democratic political systems and discussion arenas. Communication Research, 00936502211062773.
    [Google Scholar]
  20. Jakob, J., Dobbrick, T., & Wessler, H. (2021). The integrative complexity of online user comments across different types of democracy and discussion arenas. The International Journal of Press/Politics, 19401612211044018.
    [Google Scholar]
  21. Janssen, D., & Kies, R. (2005). Online forums and deliberative democracy. Acta Politica, 40 (3), 317–335. doi: 10.1057/palgrave.ap.5500115
    [Google Scholar]
  22. Kobayashi, S. (2018). Contextual augmentation: Data augmentation by words with paradigmatic relations. arXiv preprint arXiv:1805.06201.
    [Google Scholar]
  23. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics, 159–174.
    [Google Scholar]
  24. Liao, W., Zhang, J., Oh, Y. J., & Palomares, N. A. (2021). Linguistic accommodation enhances compliance to charity donation: The role of interpersonal communication processes in mediated compliance-gaining conversations. Journal of Computer-Mediated Communication.
    [Google Scholar]
  25. Maia, R. C. M., & Rezende, T. A. S. (2016). Respect and disrespect in deliberation across the networked media environment: Examining multiple paths of political talk. Journal of Computer-Mediated Communication, 21 (2), 121–139. doi: 10.1111/jcc4.12155
    [Google Scholar]
  26. Matias, J. N. (2019). Preventing harassment and increasing group participation through social norms in 2,190 online science discussions. Proceedings of the National Academy of Sciences, 116 (20), 9785–9789.
    [Google Scholar]
  27. Monroe, B. L., Colaresi, M. P., & Quinn, K. M. (2008). Fightin’words: Lexical feature selection and evaluation for identifying the content of political conflict. Political Analysis, 16 (4), 372–403.
    [Google Scholar]
  28. Monroe, B. L., & Schrodt, P. A. (2008). Introduction to the special issue: The statistical analysis of political text. Political Analysis, 16 (4), 351–355.
    [Google Scholar]
  29. Muddiman, A., McGregor, S. C., & Stroud, N. J. (2018). (Re)claiming our expertise: Parsing large text corpora with manually validated and organic dictionaries. Political Communication. doi: 10.1080/10584609.2018.1517843
    [Google Scholar]
  30. Niculae, V., Kumar, S., Boyd-Graber, J., & Danescu-Niculescu-Mizil, C. (2015). Linguistic harbingers of betrayal: A case study on an online strategy game. arXiv preprint arXiv:1506.04744.
    [Google Scholar]
  31. Oz, M., Zheng, P., & Chen, G. M. (2018). Twitter versus Facebook: Comparing incivility, impoliteness, and deliberative attributes. New Media & Society, 20 (9), 3400–3419. doi: 10.1177/1461444817749516
    [Google Scholar]
  32. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830
    [Google Scholar]
  33. Pennebaker, J. W., Boyd, R. L., Jordan, K., & Blackburn, K. (2015). The development and psychometric properties of LIWC2015 (Tech. Rep.). Austin, TX: University of Texas at Austin.
    [Google Scholar]
  34. Peskov, D., Cheng, B., Elgohary, A., Barrow, J., Danescu-Niculescu-Mizil, C., & Boyd-Graber, J. (2020). It takes two to lie: One to lie, and one to listen. In Proceedings of the 58th annual meeting of the association for computational linguistics (pp. 3811–3854).
    [Google Scholar]
  35. Potter, W. J., & Levine-Donnerstein, D. (1999). Rethinking validity and reliability in content analysis.
    [Google Scholar]
  36. Preoţiuc-Pietro, D., Liu, Y., Hopkins, D., & Ungar, L. (2017). Beyond binary labels: political ideology prediction of twitter users. In Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 729–740).
    [Google Scholar]
  37. Rinke, E. M. (2015). Mediated deliberation. The International Encyclopedia of Political Communication.
    [Google Scholar]
  38. Rowe, I. (2015). Deliberation 2.0: Comparing the deliberative quality of online news user comments across platforms. Journal of broadcasting & electronic media, 59 (4), 539–555.
    [Google Scholar]
  39. Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., & others (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. PloS one, 8 (9), e73791.
    [Google Scholar]
  40. Steenbergen, M. R., Bächtiger, A., Spörndli, M., & Steiner, J. (2003). Measuring political deliberation: A discourse quality index. Comparative European Politics, 1 (1), 21–48. doi: 10.1057/palgrave.cep.6110002
    [Google Scholar]
  41. Stromer-Galley, J. (2007). Measuring deliberation’s content: A coding scheme. Journal of Public Deliberation, 3 (1), Article 12.
    [Google Scholar]
  42. Stromer-Galley, J., & Martinson, A. M. (2009). Coherence in political computer-mediated communication: Analyzing topic relevance and drift in chat. Discourse & Communication, 3 (2), 195–216. doi: 10.1177/1750481309102452
    [Google Scholar]
  43. Stroud, N. J., Scacco, J. M., Muddiman, A., & Curry, A. L. (2015). Changing deliberative norms on news organizations’ Facebook sites. Journal of Computer-Mediated Communication, 20 (2), 188–203. doi: 10.1111/jcc4.12104
    [Google Scholar]
  44. Theocharis, Y., Barberá, P., Fazekas, Z., Popa, S. A., & Parnet, O. (2016). A bad workman blames his tweets: The consequences of citizens’ uncivil Twitter use when interacting with party candidates. Journal of Communication, 66 (6), 1007–1031. doi: 10.1111/jcom.12259
    [Google Scholar]
  45. Wessler, H. (2008). Investigating deliberativeness comparatively. Political communication, 25 (1), 1–22.
    [Google Scholar]
  46. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., & others (2019). Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771.
    [Google Scholar]
  47. Fournier-Tombs, E., & Di Marzo Serugendo, G. (2019). Delibanalysis: Understanding the quality of online political discourse with machine learning. Journal of Information Science, 0165551519871828.
    [Google Scholar]
  48. Groshek, J., & Cutino, C. (2016). Meaner on mobile: Incivility and impoliteness in communicating contentious politics on sociotechnical networks. Social Media + Society, 2 (4), 1–10. doi: 10.1177/2056305116677137
    [Google Scholar]
  49. Halpern, D., & Gibbs, J. (2013). Social media as a catalyst for online deliberation? Exploring the affordances of Facebook and YouTube for political expression. Computers in Human Behavior, 29 (3), 1159–1168. doi: 10.1016/j.chb.2012.10.008
    [Google Scholar]
  50. Jaidka, K., Zhou, A., & Lelkes, Y. (2019). Brevity is the soul of twitter: The constraint affordance and political discussion. Journal of Communication, 69 (4), 345–372.
    [Google Scholar]
  51. Maia, R. C. M., & Rezende, T. A. S. (2016). Respect and disrespect in deliberation across the networked media environment: Examining multiple paths of political talk. Journal of Computer-Mediated Communication, 21 (2), 121–139. doi: 10.1111/jcc4.12155
    [Google Scholar]
  52. Papacharissi, Z. (2004). Democracy online: Civility, politeness, and the democratic potential of online political discussion groups. New Media & Society, 6 (2), 259–283. doi: 10.1177/1461444804041444
    [Google Scholar]
  53. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
    [Google Scholar]
  54. Rinke, E. M. (2015). Mediated deliberation. The International Encyclopedia of Political Communication.
    [Google Scholar]
  55. Rossini, P. (2020). Beyond incivility: Understanding patterns of uncivil and intolerant discourse in online political talk. Communication Research. doi: 10.1177/0093650220921314
    [Google Scholar]
  56. Stromer-Galley, J., & Martinson, A. M. (2009). Coherence in political computer-mediated communication: Analyzing topic relevance and drift in chat. Discourse & Communication, 3 (2), 195–216. doi: 10.1177/1750481309102452
    [Google Scholar]
  57. Wessler, H. (2008). Investigating deliberativeness comparatively. Political communication, 25 (1), 1–22.
    [Google Scholar]
/content/journals/10.5117/CCR2022.2.005.JAID
Loading
/content/journals/10.5117/CCR2022.2.005.JAID
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error