2004
Volume 37, Issue 4
  • ISSN: 0921-5077
  • E-ISSN: 1875-7235

Abstract

Samenvatting

Het doel van deze studie was om de psychometrische netwerkstructuur van burn-outsymptomen te onderzoeken en hierbij na te gaan of de sterkte van relaties tussen symptomen varieert als functie van de chronische stress die iemand ervaart. Op deze wijze illustreren we de meerwaarde van een netwerkbenadering om burn-out te onderzoeken. We verwachten dat burn-outsymptomen sterker met elkaar zullen samenhangen bij hogere niveaus van stress, omdat chronische stress als een cruciale factor wordt gezien in de ontwikkeling van burn-out. Dit sluit aan bij de kernhypothese van het netwerkperspectief, die zegt dat symptomen van stoornissen elkaar sterker beïnvloeden als iemand in een pathologische toestand is. We onderzochten deze hypothese met cross-sectioneel online survey design. In totaal vulden 460 deelnemers een demografische vragenlijst in, gevolgd door de Perceived Stress Scale en Burnout Assessment Tool. Resultaten bevestigen de hypothese: de centraliteit van het netwerkmodel was hoger bij personen met een gemiddelde tot hoge mate van chronische stress. Dit bleek voornamelijk het gevolg van sterkere connecties van depressieve klachten in het netwerk van burn-outsymptomen. We concluderen dat de netwerkbenadering een waardevolle bijdrage kan vormen voor onderzoek naar de ontwikkeling van burn-out en nuttige inzichten kan bieden voor preventie en behandeling.

Loading

Article metrics loading...

/content/journals/10.5117/GO2024.4.003.VANT
2024-11-01
2024-11-24
Loading full text...

Full text loading...

References

  1. Abdi, H. (2010). Holm’s sequential Bonferroni procedure. In N.Salkind (Ed.), Encyclopedia of research design (p. 1-8). Thousand Oaks.
    [Google Scholar]
  2. Basinska, B. A., & Gruszczynska, E. (2020). Burnout as a state: Random-intercept cross-lagged relationship between exhaustion and disengagement in a 10-day study. Psychology Research and Behavior Management, 13, 267-278. https://doi.org/10.2147/PRBM.S244397
    [Google Scholar]
  3. Bayes, A., Tavella, G., & Parker, G. (2021). The biology of burnout: Causes and consequences. The World Journal of Biological Psychiatry, 22(9), 686-698. https://doi.org/10.1080/15622975.2021.1907713
    [Google Scholar]
  4. Beard, C., Millner, A. J., Forgeard, M. J. C., Fried, E. I., Hsu, K. J., Treadway, M. T., Leonard, C. V., Kertz, S. J., & Björgvinsson, T. (2016). Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychological Medicine, 46(16), 3359-3369. https://doi.org/10.1017/S0033291716002300
    [Google Scholar]
  5. Beltz, A. M., Wright, A. G. C., Sprague, B. N., & Molenaar, P. C. M. (2016). Bridging the nomothetic and idiographic approaches to the analysis of clinical data. Assessment, 23(4), 447-458. https://doi.org/10.1177/1073191116648209
    [Google Scholar]
  6. Bianchi, R., Truchot, D., Laurent, E., Brisson, R., & Schonfeld, I. S. (2014). Is burnout solely job-related? A critical comment. Scandinavian Journal of Psychology, 55(4), 357-361. https://doi.org/10.1111/sjop.12119
    [Google Scholar]
  7. Blanchard, M. A., Roskam, I., Mikolajczak, M., & Heeren, A. (2021). A network approach to parental burnout. Child Abuse & Neglect, 111, 104826. https://doi.org/10.1016/j.chiabu.2020.104826
    [Google Scholar]
  8. Borsboom, D., Deserno, M. K., Rhemtulla, M., Epskamp, S., Fried, E. I., McNally, R. J., Robinaugh, D. J., Perugini, M., Dalege, J., Costantini, G., Isvoranu, A.-M., Wysocki, A. C., Van Borkulo, C. D., Van Bork, R., & Waldorp, L. J. (2021). Network analysis of multivariate data in psychological science. Nature Reviews Methods Primers, 1(1), 58. https://doi.org/10.1038/s43586-021-00055-w
    [Google Scholar]
  9. Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., Wigman, J. T. W., & Snippe, E. (2019). What do centrality measures measure in psychological networks?Journal of Abnormal Psychology, 128(8), 892-903. https://doi.org/10.1037/abn0000446
    [Google Scholar]
  10. Bringmann, L. F., Lemmens, L. H. J. M., Huibers, M. J. H., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the Beck Depression Inventory-II. Psychological Medicine, 45(04), 747-757. https://doi.org/10.1017/S0033291714001809
    [Google Scholar]
  11. Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., Borsboom, D., & Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8(4), e60188. https://doi.org/10.1371/journal.pone.0060188
    [Google Scholar]
  12. Cohen, S. (1988). Perceived stress in a probability sample of the United States. In S.Spacapam & S.Oskamp (Eds.), The social psychology of health (pp. 31-67). Sage Publications.
    [Google Scholar]
  13. Cramer, A. O. J., Van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., Kendler, K. S., & Borsboom, D. (2012). Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people: dimensions of normal personality as networks. European Journal of Personality, 26(4), 414-431. https://doi.org/10.1002/per.1866
    [Google Scholar]
  14. Eaton, N. R., Bringmann, L. F., Elmer, T., Fried, E. I., Forbes, M. K., Greene, A. L., Krueger, R. F., Kotov, R., McGorry, P. D., Mei, C., & Waszczuk, M. A. (2023). A review of approaches and models in psychopathology conceptualization research. Nature Reviews Psychology, 2(10), 622-636. https://doi.org/10.1038/s44159-023-00218-4
    [Google Scholar]
  15. Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195-212. https://doi.org/10.3758/s13428-017-0862-1
    [Google Scholar]
  16. Ernst, J., Jordan, K.-D., Weilenmann, S., Sazpinar, O., Gehrke, S., Paolercio, F., Petry, H., Pfaltz, M. C., Méan, M., Aebischer, O., Gachoud, D., Morina, N., Von Känel, R., & Spiller, T. R. (2021). Burnout, depression and anxiety among Swiss medical students: A network analysis. Journal of Psychiatric Research, 143, 196-201. https://doi.org/10.1016/j.jpsychires.2021.09.017
    [Google Scholar]
  17. Féry, Y.-A., Ferry, A., Hofe, A. V., & Rieu, M. (1997). Effect of physical exhaustion on cognitive functioning. Perceptual and Motor Skills, 84(1), 291-298. https://doi.org/10.2466/pms.1997.84.1.291
    [Google Scholar]
  18. Freudenberger, H. J. (1974). Staff burn-out. Journal of Social Issues, 30(1), 159-165. https://doi.org/10.1111/j.1540-4560.1974.tb00706.x
    [Google Scholar]
  19. Fried, E. I. (2022). Studying mental health problems as systems, not syndromes. Current Directions in Psychological Science, 09637214221114089. https://doi.org/10.1177/09637214221114089
    [Google Scholar]
  20. Fried, E. I., Epskamp, S., Nesse, R. M., Tuerlinckx, F., & Borsboom, D. (2016). What are ‘good’ depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. Journal of Affective Disorders, 189, 314-320. https://doi.org/10.1016/j.jad.2015.09.005
    [Google Scholar]
  21. Fried, E. I., Flake, J. K., & Robinaugh, D. J. (2022). Revisiting the theoretical and methodological foundations of depression measurement. Nature Reviews Psychology, 1(6), 358-368. https://doi.org/10.1038/s44159-022-00050-2
    [Google Scholar]
  22. Fried, E. I., Proppert, R. K. K., & Rieble, C. L. (2023). Building an early warning system for depression: Rationale, objectives, and methods of the WARN-D study. Clinical Psychology in Europe, 5(3), 1-25. https://doi.org/10.32872/cpe.10075
    [Google Scholar]
  23. Fried, E. I., Van Borkulo, C. D., Cramer, A. O. J., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52(1), 1-10. https://doi.org/10.1007/s00127-016-1319-z
    [Google Scholar]
  24. Hobfoll, S. E. (1989). Conservation of resources. American Psychologist, 44, 513-524.
    [Google Scholar]
  25. ICD-11. (n.d.). International classification of diseases 11th revision: The global standard for diagnostic health information. https://icd.who.int/en
    [Google Scholar]
  26. Jansson-Fröjmark, M., & Lindblom, K. (2010). Is there a bidirectional link between insomnia and burnout? A prospective study in the Swedish workforce. International Journal of Behavioral Medicine, 17(4), 306-313. https://doi.org/10.1007/s12529-010-9107-8
    [Google Scholar]
  27. Jones, P. J., Ma, R., & McNally, R. J. (2021). Bridge centrality: A network approach to understanding comorbidity. Multivariate Behavioral Research, 56(2), 353-367. https://doi.org/10.1080/00273171.2019.1614898
    [Google Scholar]
  28. Maslach, C. (1976). Burned-out. Human Relations, 9(5), 16-22.
    [Google Scholar]
  29. McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840(1), 33-44. https://doi.org/10.1111/j.1749-6632.1998.tb09546.x
    [Google Scholar]
  30. Orem, D. M., Petrac, D. C., & Bedwell, J. S. (2008). Chronic self-perceived stress and set-shifting performance in undergraduate students. Stress, 11(1), 73-78. https://doi.org/10.1080/10253890701535103
    [Google Scholar]
  31. Revelle, W., & Condon, D. M. (2019). Reliability from alpha to omega: A tutorial. Psychological Assessment, 31(12), 1395-1411. https://doi.org/10.1037/pas0000754
    [Google Scholar]
  32. Riolli, L., & Savicki, V. (2003). Optimism and coping as moderators of the relationship between chronic stress and burnout. Psychological Reports, 92(3_suppl), 1215-1226. https://doi.org/10.2466/pr0.2003.92.3c.1215
    [Google Scholar]
  33. Roefs, A., Fried, E. I., Kindt, M., Martijn, C., Elzinga, B., Evers, A. W. M., Wiers, R. W., Borsboom, D., & Jansen, A. (2022). A new science of mental disorders: Using personalised, transdiagnostic, dynamical systems to understand, model, diagnose and treat psychopathology. Behaviour Research and Therapy, 153, 104096. https://doi.org/10.1016/j.brat.2022.104096
    [Google Scholar]
  34. Schaufeli, W. B., Desart, S., & De Witte, H. (2020). Burnout Assessment Tool (BAT): Development, validity, and reliability. International Journal of Environmental Research and Public Health, 17(24), 9495. https://doi.org/10.3390/ijerph17249495
    [Google Scholar]
  35. Schaufeli, W. B., Leiter, M. P., & Maslach, C. (2009). Burnout: 35 years of research and practice. Career Development International, 14(3), 204-220. https://doi.org/10.1108/13620430910966406
    [Google Scholar]
  36. Schetter, C. D., & Dolbier, C. (2011). Resilience in the context of chronic stress and health in adults. Social and Personality Psychology Compass, 5(9), 634-652. https://doi.org/10.1111/j.1751-9004.2011.00379.x
    [Google Scholar]
  37. Sørengaard, T. A., & Saksvik-Lehouillier, I. (2022). Associations between burnout symptoms and sleep among workers during the COVID-19 pandemic. Sleep Medicine, 90, 199-203. https://doi.org/10.1016/j.sleep.2022.01.022
    [Google Scholar]
  38. Terluin, B. (1996). De vierdimensionale klachtenlijst (4DKL): Een vragenlijst voor het meten van distress, depressie, angst en somatisatie. Huisarts en Wetenschap, 39, 538-547.
    [Google Scholar]
  39. Tóth-Király, I., Morin, A. J. S., & Salmela-Aro, K. (2021). Reciprocal associations between burnout and depression: An 8-year longitudinal study. Applied Psychology, apps.12295. https://doi.org/10.1111/apps.12295
    [Google Scholar]
  40. Van Borkulo, C. (2018). A tutorial on R package NetworkComparisonTest (NCT). In Symptom network models in depression research: From methodological exploration to clinical application (pp. 249-257).
    [Google Scholar]
  41. Van Borkulo, C., Boschloo, L., Borsboom, D., Penninx, B. W. J. H., Waldorp, L. J., & Schoevers, R. A. (2015). Association of symptom network structure with the course of depression. JAMA Psychiatry, 72(12), 1219-1226. https://doi.org/10.1001/jamapsychiatry.2015.2079
    [Google Scholar]
  42. Van Dam, A. (2021). A clinical perspective on burnout: Diagnosis, classification, and treatment of clinical burnout. European Journal of Work and Organizational Psychology, 30(5), 732-741. https://doi.org/10.1080/1359432X.2021.1948400
    [Google Scholar]
  43. Veldhuis, G. A., Sluijs, T., Van Zwieten, M. H. J., Bouwman, J., Wiezer, N. M., & Wortelboer, H. M. (2020). A proof-of-concept system dynamics simulation model of the development of burnout and recovery using retrospective case data. International Journal of Environmental Research and Public Health, 17(16), 5964. https://doi.org/10.3390/ijerph17165964
    [Google Scholar]
  44. Verkuilen, J., Bianchi, R., Schonfeld, I. S., & Laurent, E. (2020). Burnout depression overlap: Exploratory structural equation modeling bifactor analysis and network analysis. Assessment, 107319112091109. https://doi.org/10.1177/1073191120911095
    [Google Scholar]
  45. Wu, L., Ren, L., Wang, Y., Zhang, K., Fang, P., Liu, X., Yang, Q., Wang, X., Wu, S., & Peng, J. (2021). The item network and domain network of burnout in Chinese nurses. BMC Nursing, 20(1), 1-11. https://doi.org/10.1186/s12912-021-00670-8
    [Google Scholar]
/content/journals/10.5117/GO2024.4.003.VANT
Loading
/content/journals/10.5117/GO2024.4.003.VANT
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error